Electric Dipole Moments and Molecular Conformations of Benzophenones, Benzils, Benzhydrols, and Benzoins

By C. W. N. Cumper • and A. P. Thurston, School of Chemistry, Thames Polytechnic, London S.E.18

The electric dipole moments of 28 compounds have been measured in benzene solution at 25.0 °C. The results are analysed in terms of the probable conformations of the molecules in solution.

EXCEPT for the benzils it is sterically impossible for both phenyl rings in the molecules studied to be coplanar. Various group moments can be evaluated from the dipole moments of the unsubstituted molecules and those in which both phenyl rings have a *para*-methyl group or chlorine atom as substituent. The results for the ortho- and meta-substituted compounds are then employed to study their molecular conformations in benzene solution.

EXPERIMENTAL AND RESULTS

The electric dipole moments were determined as described previously.¹ The measured properties of the solutions at 25.0 °C are recorded in Table 1 and the polarisation data and dipole moments in Table 2; the symbols have their usual meanings. The concentrations of the benzhydrol solutions were kept below that at which association becomes significant.²

Preparation and Purification of Compounds.-Each compound was extensively purified immediately before its dipole moment was determined.

Benzophenones .--- These were prepared from the appropriate Grignard reagent and acid chloride ³ at -10 °C, the intermediate being decomposed with concentrated hydrochloric acid, and the benzophenone isolated by fractionation under reduced pressure and purified by crystallisation to constant m.p. Thus were obtained: di-o-tolyl ketone, m.p. 72°; di-m-tolyl ketone, m.p. 45°; di-p-tolyl ketone, m.p. 95°; 2,2'-dichlorobenzophenone, m.p. 49°; 3,3'-di-

¹ C. W. N. Cumper, A. A. Foxton, J. F. Read, and A. I. Vogel, J. Chem. Soc., 1964, 430. ² A. H. Read, D. Cleverdon, G. B. Collins, and J. W. Smith,

J. Chem. Soc., 1955, 3793.

chlorobenzophenone, m.p. 123°; and 4,4'-dichlorobenzophenone, m.p. 148°.

Benzhydrols .--- These were prepared by reducing the corresponding benzophenone with aluminium isopropoxide solution.⁴ The benzhydrol was extracted with ether, isolated by distillation, and then recrystallised to constant m.p.; benzhydrol, m.p. 69°; di-o-tolylmethanol, m.p. 119°; di-m-tolylmethanol, b.p. 134°/0.5 mmHg (Found: C, 84.8; H, 7.6. C₁₅H₁₆O requires C, 84.9; H, 7.6%); di-p-tolylmethanol, m.p. 69°; 2,2'-dichlorophenylmethanol, m.p. 90°; 3,3'-dichlorophenylmethanol, m.p. 46°; and 4,4'dichlorophenylmethanol, m.p. 94°.

Benzoins .- These were prepared by refluxing in a nitrogen atmosphere the appropriate aromatic aldehyde and aqueous alkali-metal cyanide solution.⁴ The benzoins were isolated by extraction with ether followed either by evaporation of the ether or by steam distillation.⁵ The products were crystallised to constant m.p.; benzoin, m.p. 137°; 2,2'-dimethylbenzoin, m.p. 79°; 3,3'-dimethylbenzoin, m.p. 38°; 4,4'-dimethylbenzoin, m.p. 89°; 2,2'-dichlorobenzoin, m.p. 64°; 3,3'-dichlorobenzoin, m.p. 76°; and 4,4'-dichlorobenzoin, m.p. 88°.

Benzils .--- These were prepared by oxidising the corresponding benzoin with catalytic amounts of copper(II) salts in ammonium nitrate solution; 4 benzil, m.p. 95°; 2,2'dimethylbenzil, m.p. 94°; 3,3'-dimethylbenzil, m.p. 102°; 4,4'-dimethylbenzil, m.p. 104°; 2,2'-dichlorobenzil, m.p. 132°; 3,3'-dichlorobenzil, m.p. 115° (Found: C, 60·1; H, 3.1; Cl, 25.3. C₁₄H₈Cl₂O₂ requires C, 60.2; H, 2.9; Cl, 25.4%); and 4,4'-dichlorobenzil, m.p. 199°.

³ J. W. Cook, J. Chem. Soc., 1930, 1087. ⁴ A. I. Vogel, 'Practical Organic Chemistry,' Longmans, Green and Co., London, 3rd edn., 1956.

⁵ A. Weissberger, J. Chem. Soc., 1935, 223.

TABLE 1

Incremen	ts in elec	ctric perm	ittivi	ities	(Δε),	specific	volumes
(Δv) ,	and ref	active ind	lices	$(\Delta n$) of t	oenzene	solutions
with	weight	fractions	w_2	at	25.0	°C. ε ₁ =	= 2.2741,
$v_1 =$	1.14445,	$n_1 = 1.49$	790				

	- 1 145	$145, n_1 =$	- 1.491	90			
$10^{6}w_{2}$	104Δε	$10^{5}\Delta v$	$10^{5}\Delta n$	10 ⁶ w,	10 4 Δε	$10^{5}\Delta v$	$10^{5}\Delta n$
-		henone				yl ketone	
2116	116	-53	20	1424	54	-31	7
5117	312	$-111 \\ -176$	50	3376	127	-79	21
6837	381	-176	62	4650	175	-108	30
8271	472	-217	76	7566	285	-173	42
9467	540	-248	88	10.526	400	-243	63
10,775	$472 \\ 540 \\ 616$	-277	100	11.136	413	-255	66
15,453	883	-398	150	7566 10,526 11,136 14,922	563		94
10,100	000	000	100	11,022	000	010	•-
1	Di- <i>m</i> -tol	yl ketone	;]	Di-p-tol	yl ketone	;
1756	92	-42	13	1452	88	-32	13
3378	182	-76	$\frac{15}{25}$	4424	268	-96	39
	322	-139	$\frac{25}{46}$			-143	58 58
6176	344	-139 -183		6564			
8249	429		60 79	7563	461	$-109 \\ -210$	67
9848	$ \begin{array}{r} 429 \\ 510 \\ 614 \\ \hline 614 \end{array} $	-223	72	$9754 \\ 11,730$	596	-210	86
11,793	614	-265	72 87	11,730	705	-257	104
15,096	785	-342	111	13,610	830	-296	121
9 9/ T	Vichlorol	benzophe		<u>99/т</u>	Vichloro	benzophe	
		-				-	
1361	82	-57	13	1569	68	-60	13
2800	169	-112	25	3161	135	-125	27
5479	332	-220	49	5107	217	-201	43
7447	450	-301	66	6819	290	-267	58
8426	509	-342	75	7489	318	-294	64
9156	554	-372	82	9394			81
11,021	670		98	11,250	478		96
,			00	,-00			
4,4'-I	Dichlorol	benzophe	enone		Be	nzil	
2202	33	-89	21	1060	89	-34	9
2437	36	-97	$\bar{23}$	1734	129	-56	15
4108	64	-164	39	3927	260	-129	33
5996	86	-240	57	5542	412	-179	48
7501	112	$-240 \\ -300$	71	7766	575	-251	40 67
		- 300				-299	
8267	126	$-333 \\ -397$	78	9268	690 790	-299	79
9924	149	-397	93	9812	730	-316	84
2.	2'-Dime	thylbenz	il	3.	3'-Dime	ethylbenz	il
327	20	8	4	717	53	-17	7
		-18	47	1737	129	-17 - 42	18
839	47	$-18 \\ -29$				$-42 \\ -57$	
1401	86	$-29 \\ -51$	12	2429	175		25
2311	132		19	3155	226	-75	
3385		01					32
	197	-63	28	3713	265	-88	37
3982	229	$-63 \\ -87$	$\frac{28}{33}$	$\begin{array}{c} 3713\\ 4319 \end{array}$	$\begin{array}{c} 265\\ 316 \end{array}$	$-88 \\ -102$	$\begin{array}{c} 37 \\ 44 \end{array}$
$\begin{array}{c} 3982 \\ 5326 \end{array}$		-63	28	3713	265	-88	37
5326	229 299	$-63 \\ -87 \\ -132$	28 33 44	$3713 \\ 4319 \\ 5714$	$265 \\ 316 \\ 413$	$-88 \\ -102 \\ -135$	37 44 58
5326 4,	229 299 4'-Dime	-63 -87 -132	28 33 44 il	$3713 \\ 4319 \\ 5714 \\ 2,$	265 316 413 ,2'-Dich	$-88 \\ -102 \\ -135$	37 44 58
5326 4, 1004	229 299 4'-Dime 95	-63 -87 -132 thylbenz -24	28 33 44 il 8	3713 4319 5714 2, 571	265 316 413 ,2'-Dich 36	-88 -102 -135 llorobenzi -23	37 44 58 il 4
5326 4, 1004 2037	229 299 4'-Dime 95 174	$-63 \\ -87 \\ -132$ thylbenz $-24 \\ -49$	28 33 44 il 8 17	$3713 \\ 4319 \\ 5714 \\ 2, \\571 \\ 1269$	265 316 413 ,2'-Dich 36 71	$-88 \\ -102 \\ -135$ llorobenzi $-23 \\ -54$	37 44 58 il 4 9
5326 4, 1004 2037 2547	229 299 4'-Dime 95 174 222	-63 - 87 - 132 thylbenz -24 - 49 - 62	28 33 44 il 8 17 20	$3713 \\ 4319 \\ 5714 \\ 2 \\ 571 \\ 1269 \\ 2192 $	265 316 413 ,2'-Dich 36 71 123	-88 - 102 - 135 lorobenz: -23 - 54 - 92	37 44 58 11 4 9 15
5326 4, 1004 2037	229 299 4'-Dime 95 174 222 304	-63 - 87 - 132 thylbenz -24 - 49 - 62 - 86	28 33 44 il 8 17	3713 4319 5714 2 571 1269 2192 2972	265 316 413 ,2'-Dich 36 71	$ \begin{array}{r} -88 \\ -102 \\ -135 \\ \begin{array}{r} -135 \\ \end{array} $ llorobenzi \\ -23 \\ -54 \\ -92 \\ -125 \\ \end{array}	37 44 58 il 4 9
5326 4, 1004 2037 2547	229 299 4'-Dime 95 174 222	$ \begin{array}{r} -63 \\ -87 \\ -132 \\ \\ \text{thylbenz} \\ -24 \\ -49 \\ -62 \\ -86 \\ -98 \\ \end{array} $	28 33 44 il 8 17 20	$3713 \\ 4319 \\ 5714 \\ 2 \\ 571 \\ 1269 \\ 2192 $	265 316 413 ,2'-Dich 36 71 123	$ \begin{array}{r} -88 \\ -102 \\ -135 \\ \end{array} $ llorobenzi $ \begin{array}{r} -23 \\ -54 \\ -92 \\ -125 \\ -168 \end{array} $	37 44 58 11 4 9 15
5326 4, 1004 2037 2547 3496	229 299 4'-Dime 95 174 222 304	-63 - 87 - 132 thylbenz -24 - 49 - 62 - 86	28 33 44 il 8 17 20 27	3713 4319 5714 2 571 1269 2192 2972	265 316 413 ,2'-Dich 36 71 123 168	$ \begin{array}{r} -88 \\ -102 \\ -135 \\ \begin{array}{r} -135 \\ \end{array} $ llorobenzi \\ -23 \\ -54 \\ -92 \\ -125 \\ \end{array}	37 44 58 il 9 15 20
5326 4, 1004 2037 2547 3496 4016	229 299 4'-Dime 95 174 222 304 347 420	$ \begin{array}{r} -63 \\ -87 \\ -132 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	28 33 44 il 8 17 20 27 31	3713 4319 5714 2 571 1269 2192 2972 3983	265 316 413 ,2'-Dich 36 71 123 168 225	$ \begin{array}{r} -88 \\ -102 \\ -135 \\ \end{array} $ llorobenzi $ \begin{array}{r} -23 \\ -54 \\ -92 \\ -125 \\ -168 \end{array} $	37 44 58 il 9 15 20 27
5326 4, 1004 2037 2547 3496 4016 4804 5742	229 299 4'-Dime 95 174 222 304 347 420 496	-63 -87 -132 	28 33 44 il 8 17 20 27 31 37 44	3713 4319 5714 2; 571 1269 2192 2972 3983 5024 5520	265 316 413 ,2'-Dich 36 71 123 168 225 282 304	$ \begin{array}{r} -88 \\ -102 \\ -135 \\ \end{array} $ lorobenzi $ \begin{array}{r} -23 \\ -54 \\ -92 \\ -125 \\ -168 \\ -213 \\ -232 \end{array} $	37 44 58 11 4 9 15 20 27 34 37
5326 4, 1004 2037 2547 3496 4016 4804 5742 3	229 299 4'-Dime 95 174 222 304 347 420 496 ,3'-Dich	-63 -87 -132 	28 33 44 il 8 17 20 27 31 37 44	3713 4319 5714 2 571 1269 2192 2972 3983 5024 5520 4	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich	$ \begin{array}{r} -88 \\ -102 \\ -135 \\ \\ 1000 \\ -23 \\ -54 \\ -92 \\ -125 \\ -168 \\ -213 \\ -232 \\ \\ \\ 1000 \\ -232 \\ \end{array} $	37 44 58 11 4 9 15 20 27 34 37
5326 4, 1004 2037 2547 3496 4016 4804 5742 3 820	229 299 4'-Dime 95 174 222 304 347 420 496 ,3'-Dichi 38	$ \begin{array}{r} -63 \\ -87 \\ -132 \\ \text{thylbenz} \\ -24 \\ -49 \\ -62 \\ -86 \\ -98 \\ -117 \\ -139 \\ \text{lorobenz} \\ -39 \\ \end{array} $	28 33 44 il 8 17 20 27 31 37 44 il 7	3713 4319 5714 2, 571 1269 2192 2972 3983 5024 5520 4, 652	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146	$\begin{array}{r} -88 \\ -102 \\ -135 \\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 9\end{array}$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3	229 299 4'-Dime 95 174 222 304 347 420 496 ,3'-Dich 38 80	$\begin{array}{r} -63 \\ -87 \\ -132 \\ \text{thylbenz} \\ -24 \\ -49 \\ -62 \\ -86 \\ -98 \\ -117 \\ -139 \\ \text{lorobenz} \\ -39 \\ -86 \\ \end{array}$	28 33 44 il 8 17 20 27 31 37 44 il 7 15	3713 4319 5714 2, 571 1269 2192 2972 3983 5024 5520 4, 652 1502	265 316 413 ,2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282	$\begin{array}{r} -88 \\ -102 \\ -135 \\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ \end{array}$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3 820	229 299 4'-Dime 95 174 222 304 347 420 496 ,3'-Dichi 38	$\begin{array}{r} -63 \\ -87 \\ -132 \end{array}$	28 33 44 il 8 17 20 27 31 37 44 il 7	3713 4319 5714 2, 571 1269 2192 2972 3983 5024 5520 4, 652	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146	$\begin{array}{r} -88 \\ -102 \\ -135 \end{array}$ lorobenz: $\begin{array}{r} -23 \\ -54 \\ -92 \\ -125 \\ -168 \\ -213 \\ -232 \end{array}$ lorobenz: $\begin{array}{r} -28 \\ -66 \\ -131 \end{array}$	$\begin{array}{c} 37 \\ 44 \\ 58 \\ 11 \\ 9 \\ 15 \\ 20 \\ 27 \\ 34 \\ 37 \\ 11 \\ 9 \\ 9 \\ \end{array}$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3 820 1732	229 299 4'-Dime 95 174 222 304 347 420 496 ,3'-Dich 38 80	$\begin{array}{r} -63 \\ -87 \\ -132 \\ \text{thylbenz} \\ -24 \\ -49 \\ -62 \\ -86 \\ -98 \\ -117 \\ -139 \\ \text{lorobenzi} \\ -39 \\ -86 \\ -126 \\ -126 \\ -150 \end{array}$	28 33 44 il 8 17 20 27 31 37 44 il 7 15	3713 4319 5714 2, 571 1269 2192 2972 3983 5024 5520 4, 652 1502	265 316 413 ,2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282	$\begin{array}{r} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ \end{array}$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3 820 1732 2646	229 299 4'-Dime 95 174 222 304 347 420 496 ,3'-Dich' 38 80 121	$\begin{array}{r} -63 \\ -87 \\ -132 \\ \text{thylbenz} \\ -24 \\ -49 \\ -62 \\ -86 \\ -98 \\ -117 \\ -139 \\ \text{lorobenzi} \\ -39 \\ -86 \\ -98 \\ -117 \\ -139 \\ \text{lorobenzi} \\ -139 \\ -86 \\ -126 \\ -150 \\ -192 \end{array}$	28 33 44 il 8 17 20 27 31 37 44 il 7 15 23	3713 4319 5714 2, 571 1269 2192 2972 3983 5024 5520 4, 6522 1502 3056	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282 690	$\begin{array}{r} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ 32\\ \end{array}$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3 820 1732 2646 3117	229 299 4'-Dime 95 174 222 304 347 420 496 ,3'-Dichi 38 80 121 147	$\begin{array}{r} -63 \\ -87 \\ -132 \\ \text{thylbenz} \\ -24 \\ -49 \\ -62 \\ -86 \\ -98 \\ -117 \\ -139 \\ \text{lorobenzi} \\ -39 \\ -86 \\ -98 \\ -117 \\ -139 \\ \text{lorobenzi} \\ -139 \\ -86 \\ -126 \\ -150 \\ -192 \end{array}$	28 33 44 il 8 17 20 27 31 37 44 il 7 15 23 27	3713 4319 5714 2, 5711 1269 2192 2972 3983 5024 5520 4, 652 1502 3056 3961	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282 690 853	$\begin{array}{r} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 1\\ 1\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 1\\ 9\\ 16\\ 32\\ 42\\ \end{array}$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3 820 1732 2646 3117 4185	229 299 4'-Dime 95 174 222 304 347 420 496 ,3'-Dich 38 80 121 147 193	$\begin{array}{r} -63 \\ -87 \\ -132 \\ \text{thylbenz} \\ -24 \\ -49 \\ -62 \\ -86 \\ -98 \\ -117 \\ -139 \\ \text{lorobenzi} \\ -39 \\ -86 \\ -126 \\ -126 \\ -150 \end{array}$	28 33 44 11 8 17 20 27 31 37 44 11 7 15 23 27 36	3713 4319 5714 2, 571 1269 2192 2972 3983 5024 5520 4, 652 1502 3056 3961 3966 3961 4712	265 316 413 2'-Dich 36 71 123 825 282 304 4'-Dich 146 282 690 853 1043	$\begin{array}{r} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ 32\\ 42\\ 50\\ \end{array}$
$5326 \\ 4, \\ 1004 \\ 2037 \\ 2547 \\ 3496 \\ 4016 \\ 4804 \\ 5742 \\ 3 \\ 820 \\ 1732 \\ 2646 \\ 3117 \\ 4185 \\ 5140 \\ \end{cases}$	229 299 4'-Dime 95 174 222 304 347 420 496 ,3'-Dich 38 80 121 147 193 236 281	$\begin{array}{r} -63\\ -87\\ -132\\ \mbox{thylbenz}\\ -24\\ -49\\ -62\\ -86\\ -98\\ -117\\ -139\\ \mbox{lorobenzi}\\ -39\\ -86\\ -126\\ -126\\ -150\\ -192\\ -246\\ -289\\ \end{array}$	$\begin{array}{c} 28\\ 33\\ 44\\ \end{array}$ il 8 17 20 27 31 37 44 1 7 15 23 27 36 45	3713 4319 5714 2, 571 1269 2192 2972 3983 5024 5520 4, 652 1502 3056 30561 4712 4874 6581	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282 690 853 1043 1097 1477	$\begin{array}{r} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ 32\\ 42\\ 50\\ 52\\ 70\\ \end{array}$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3820 1732 2646 3117 4185 5140 6074	229 299 4'-Dime 95 174 222 304 347 420 496 ,3'-Dichi 38 80 121 147 193 236 281 Benzh	$\begin{array}{c} -63 \\ -87 \\ -132 \\ \end{array}$	$\begin{array}{c} 28\\ 33\\ 44\\ 11\\ 8\\ 17\\ 20\\ 27\\ 31\\ 37\\ 44\\ 11\\ 7\\ 15\\ 23\\ 27\\ 36\\ 45\\ 52\\ \end{array}$	3713 4319 5714 2, 571 1269 2192 2972 3983 5024 5520 4, 652 1502 30561 4712 4874 6581	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282 690 690 853 1043 1097 1477 i-o-tolyl	$\begin{array}{c} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ 32\\ 42\\ 50\\ 52\\ 70\\ 52\\ 70\\ 51\\ 52\\ 70\\ 51\\ 52\\ 50\\ 52\\ 70\\ 51\\ 52\\ 50\\ 52\\ 52\\ 50\\ 52\\ 52\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3 820 1732 2646 3117 4185 5140 6074	229 299 4'-Dime 95 174 222 304 496 ,3'-Dich 38 80 121 147 193 236 281 Benzh 37	$\begin{array}{c} -63 \\ -87 \\ -132 \\ \end{array}$	$\begin{array}{c} 28\\ 33\\ 44\\ 11\\ 8\\ 17\\ 20\\ 27\\ 31\\ 37\\ 44\\ 11\\ 7\\ 15\\ 23\\ 27\\ 36\\ 45\\ 52\\ 18\\ \end{array}$	3713 4319 5714 2, 571 1269 2192 2972 2972 2972 2973 5024 5520 4, 652 1502 3056 3056 3056 3056 3056 3056 3056 3056	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282 690 853 1043 1097 1477 i-o-tolyl 29	$\begin{array}{r} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ 32\\ 42\\ 50\\ 52\\ 70\\ 52\\ 70\\ 51\\ 13\\ \end{array}$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3 8200 1732 2646 3117 4185 5140 6074 1989 5280	229 299 4'-Dime 95 174 222 304 420 496 ,3'-Dichi 38 80 121 147 193 236 281 Benzh 37 87	$\begin{array}{r} -63\\ -87\\ -132\\ \end{array}$	$\begin{array}{c} 28\\ 33\\ 44\\ 11\\ 8\\ 17\\ 20\\ 27\\ 31\\ 37\\ 44\\ 11\\ 7\\ 15\\ 23\\ 27\\ 36\\ 45\\ 52\\ 18\\ 44\\ 14\\ 12\\ 12\\ 15\\ 23\\ 27\\ 36\\ 45\\ 52\\ 18\\ 44\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	3713 4319 5714 2, 571 1269 2192 2972 3983 5024 5520 4, 652 1502 3056 3961 4712 4874 6581 D: 1537 3888	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282 690 853 1043 1097 1477 i-o-tolyl 29 74	$\begin{array}{r} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ 32\\ 42\\ 50\\ 52\\ 70\\ 52\\ 70\\ 51\\ 13\\ 32\\ \end{array}$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3 820 1732 2646 3117 4185 5140 6074 1989 5280 5684	229 299 4'-Dime 95 174 222 304 347 420 496 ,3'-Dich' 38 80 121 147 193 236 281 Benzl 37 87 104	$\begin{array}{r} -63\\ -87\\ -132\\ \text{thylbenz}\\ -24\\ -49\\ -62\\ -86\\ -98\\ -117\\ -139\\ \text{lorobenzi}\\ -39\\ -86\\ -126\\ -126\\ -126\\ -128\\ 9\\ -289\\ \text{hydrol}\\ -50\\ -137\\ -146\\ \end{array}$	$\begin{array}{c} 28\\ 33\\ 44\\ 11\\ 8\\ 17\\ 20\\ 27\\ 31\\ 37\\ 44\\ 11\\ 7\\ 15\\ 23\\ 27\\ 36\\ 45\\ 52\\ 18\\ 44\\ 47\\ \end{array}$	3713 4319 5714 2, 571 1269 2192 2973 3983 5024 5520 4, 652 1502 3056 3961 4712 4874 6581 D. 1537 3888 5500	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282 690 853 1043 1097 1477 i-o-tolyl 29 74 105	$\begin{array}{r} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ 32\\ 42\\ 50\\ 52\\ 70\\ 01\\ 13\\ 32\\ 44\\ \end{array}$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3 8200 1732 2646 3117 4185 5140 6074 1989 5280	229 299 4'-Dime 95 174 222 304 420 496 ,3'-Dichi 38 80 121 147 193 236 281 Benzh 37 87	$\begin{array}{r} -63\\ -87\\ -132\\ \text{thylbenz}\\ -24\\ -49\\ -62\\ -86\\ -98\\ -117\\ -139\\ \text{lorobenzi}\\ -39\\ -86\\ -126\\ -126\\ -289\\ \text{lorobenzi}\\ -289\\ \text{hydrol}\\ -50\\ -137\\ -146\\ -255\\ \end{array}$	$\begin{array}{c} 28\\ 33\\ 44\\ 11\\ 8\\ 17\\ 20\\ 27\\ 31\\ 37\\ 44\\ 11\\ 7\\ 15\\ 23\\ 27\\ 36\\ 45\\ 52\\ 18\\ 44\\ 14\\ 12\\ 12\\ 15\\ 23\\ 27\\ 36\\ 45\\ 52\\ 18\\ 44\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	3713 4319 5714 2, 571 1269 2192 2972 3983 5024 5520 4, 652 1502 3056 3961 4712 4874 6581 D: 1537 3888	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282 690 853 1043 1097 1477 i-o-tolyl 29 74	$\begin{array}{r} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ 32\\ 42\\ 50\\ 52\\ 70\\ 52\\ 70\\ 51\\ 13\\ 32\\ \end{array}$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3 820 1732 2646 3117 4185 5140 6074 1989 5280 5684	229 299 4'-Dime 95 174 222 304 347 420 496 ,3'-Dich' 38 80 121 147 193 236 281 Benzl 37 87 104	$\begin{array}{r} -63\\ -87\\ -132\\ \text{thylbenz}\\ -24\\ -49\\ -62\\ -86\\ -98\\ -117\\ -139\\ \text{lorobenzi}\\ -39\\ -86\\ -126\\ -192\\ -246\\ -289\\ \text{nydrol}\\ -50\\ -137\\ -146\\ -255\\ -272\\ \end{array}$	$\begin{array}{c} 28\\ 33\\ 44\\ 11\\ 8\\ 17\\ 20\\ 27\\ 31\\ 37\\ 44\\ 11\\ 7\\ 15\\ 23\\ 27\\ 36\\ 45\\ 52\\ 18\\ 44\\ 47\\ \end{array}$	3713 4319 5714 2, 571 1269 2192 2973 3983 5024 5520 4, 652 1502 3056 3961 4712 4874 6581 D. 1537 3888 5500	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282 690 853 1043 1097 1477 i-o-tolyl 29 74 105 149 178	$\begin{array}{r} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ 32\\ 42\\ 50\\ 52\\ 70\\ 01\\ 13\\ 32\\ 44\\ \end{array}$
5326 4, 1004 2037 2547 3496 4016 4804 5742 3820 1732 2646 3117 4185 5140 6074 1989 5280 5684 9830	229 299 4'-Dime 95 174 222 304 347 496 3% -Dichi 38 80 121 147 193 236 281 Benzh 37 87 104 180	$\begin{array}{r} -63\\ -87\\ -132\\ \text{thylbenz}\\ -24\\ -49\\ -62\\ -86\\ -98\\ -117\\ -139\\ \text{lorobenzi}\\ -39\\ -86\\ -126\\ -192\\ -246\\ -289\\ \text{nydrol}\\ -50\\ -137\\ -146\\ -255\\ -272\\ \end{array}$	$\begin{array}{c} 28\\ 33\\ 44\\ 11\\ 8\\ 17\\ 20\\ 27\\ 31\\ 37\\ 44\\ 11\\ 7\\ 15\\ 23\\ 27\\ 36\\ 45\\ 52\\ 18\\ 44\\ 47\\ 81\\ \end{array}$	3713 4319 5714 2, 571 1269 2192 2972 3983 5024 5520 4, 652 1502 3056 4712 4874 6581 D. 1537 3880 5550 8314	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282 690 853 1043 1097 1477 i-o-tolyl 29 74 105 149	$\begin{array}{r} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ 32\\ 42\\ 50\\ 52\\ 70\\ 52\\ 70\\ 52\\ 44\\ 67\\ 13\\ 32\\ 44\\ 67\\ \end{array}$
5326 4, 1004 2037 3496 4016 4804 5742 3 820 1732 2646 3117 4185 5140 6074 1989 5280 5684 9830 010,547	229 299 299 4'-Dime 95 174 222 304 496 ,3'-Dich 38 80 121 147 193 236 281 Benzl 37 87 104 180 191	$\begin{array}{r} -63\\ -87\\ -132\\ \text{thylbenz}\\ -24\\ -49\\ -62\\ -86\\ -98\\ -117\\ -139\\ \text{lorobenzi}\\ -39\\ -86\\ -126\\ -126\\ -289\\ \text{lorobenzi}\\ -289\\ \text{hydrol}\\ -50\\ -137\\ -146\\ -255\\ \end{array}$	$\begin{array}{c} 28\\ 33\\ 44\\ 11\\ 8\\ 17\\ 20\\ 27\\ 31\\ 37\\ 44\\ 11\\ 7\\ 15\\ 23\\ 27\\ 36\\ 45\\ 52\\ 18\\ 44\\ 47\\ 81\\ 86\\ \end{array}$	3713 4319 5714 2, 571 1269 2192 2972 2972 2972 2972 2972 2972 3983 5024 5520 4, 652 1502 3066 3961 4712 4874 6581 D: 1537 3888 5500 8314 9315	265 316 413 2'-Dich 36 71 123 168 225 282 304 4'-Dich 146 282 690 853 1043 1097 1477 i-o-tolyl 29 74 105 149 178	$\begin{array}{r} -88\\ -102\\ -135\\ \end{array}$	$\begin{array}{c} 37\\ 44\\ 58\\ 11\\ 4\\ 9\\ 15\\ 20\\ 27\\ 34\\ 37\\ 11\\ 9\\ 16\\ 32\\ 42\\ 50\\ 52\\ 70\\ 13\\ 32\\ 44\\ 67\\ 74\\ \end{array}$

TABLE I (Continued)								
$10^{6}w_{2}$	10 4 Δε	$10^{5}\Delta v$	$10^{5}\Delta n$	$10^{6}w_{2}$	10 4 Δε	$10^{5}\Delta v$	$10^{5}\Delta n$	
Di	i- <i>m</i> -toly	lmethan	ol	Di-p-tolylmethanol				
1573	26	-30	6	1130	15	-22	8	
3368	54	-63	24	3743	63	-73	24	
4156	66	-84	29	5008	85	-97	36	
5958	94	-120	41	8163	136	-159	58	
6778	146	-120 -136	48	10,752	181	-191	58 76	
		-200	40 71			$-191 \\ -241$		
10,004	164			12,317	209		87	
12,219	195	-245	87	13,456	226	-262	95	
	-	enylmet				nenylme		
2108	54	-84	19	991	37	-39	8	
3847	90	-151	33	3193	102	-127	26	
5465	127	-215	47	4669	144	-190	38	
8371	194	-330	72	6644	203	-266	54	
9388	217	-374	81	7882	243	-312	65	
11,463	268	-456	99	10,236	316	-406	84	
14,185	329	-562	124	11,190	344	-443	92	
Di-p-c	hloroph	enylmet	hanol		Ben	zoin		
1332	37	-53	12	1305	84	-42	10	
3047	76	-120	$\frac{12}{26}$	2225	138	-69	17	
4795	118	-120 -190	$\frac{20}{42}$	3884	247	-122	30	
5985	162	-237	52	5280	338	-163	41	
7517	189	-301	65	7110	453	-223	55	
8949	225	-356	77	8632	554	-272	67	
11,640	293	-469	95	10,621	680	-333	83	
2,2	'-Dimet	hylbenzo	oin	3,3	'-Dimet	hylbenz	oin	
844	52	-18	4	696	45	-11	2	
1539	85	-33	7	1694	108	-24	4	
2630	143	-56	12	2448	124	-38	6	
3403	190	-70	15	3560	227	-56	8	
3703	198	-76	17	3570	227	-58	8	
4718	255	-97	21	4674	300	-74	1ĭ	
5775	$\frac{250}{314}$	-119	$\frac{21}{25}$	5199		-82	12	
		hylbenzo				orobenzo		
515	39	-14	3	1039	36	-51	10	
1610	112	-42	11	1543	47	-75	14	
2429	185	-64	17	2558	76	-127	23	
2949	223	-77	20	3386	101	-164	31	
3680	277	-96	25	4300	123	-209	39	
4657	353	-122	32	4467	133	-220	41	
4986	372	-133	35	5344	161	-235	44	
3,3	'-Dichlo	orobenzo	in			orobenzo	oin	
1046	46	-46	9	605	22	-25	6	
1562	40 62	-68	13	1483	33	$-25 \\ -57$	13	
	89	-96	18	2598	33 60	-102		
2209							22	
3465	135	-150	29	3707	84	-146	32	
3960	160	-173	33	3877	79	-155	34	
5364	214	-233	44	5111	114	-202	45	
5973	240	-259	49	5381	122	-210	47	

DISCUSSION

Benzophenones.—The 0.24 D difference in dipole moment between benzophenone (3.02 D) and acetone ⁶ (2.78 D) must be due primarily to a mesomeric moment. In benzophenone it is impossible for each phenyl ring to display its maximum mesomeric moment since this would require a planar molecule. One suggested conformation has orthogonal rings with one exerting its maximum mesomeric effect which may be equated to the additional moment (0.50 D) in the Ph-C direction (with $\angle PhCC = 120^{\circ}$) necessary to increase the dipole moment of acetone to that of acetophenone 7 (3.06 D). The roles of the two rings would interchange rapidly. A more

⁶ C. W. N. Cumper and P. G. Langley, Trans. Faraday Soc., 1970, **66**, 35. ⁷ A. L. McClellan, ' Tables of Experimental Dipole Moments,'

Freeman and Co., San Francisco, 1963.

probable average conformation is one in which each ring is twisted through an angle β and has a small π -electron interaction with the carbonyl group. From an expression by McRae and Goodman⁸ for mesomeric moments $\mu = \mu_{\text{max.}} \cos^2\beta$, or $0.24 = 0.50 \cos^2\beta$, and the angle β should be *ca.* 46°.

The dipole moments of *para*-substituted benzophenones are given by equation (1) where 2γ is the

$$\mu = \mu_{\rm Ph_{2}CO} - 2\mu_{\rm s}\cos\gamma \qquad (1)$$

C-C(O)-C bond angle (120°) and the substituent has component moments μ_s of -0.37 D for a methyl group ⁹

which this equation predicts the experimental results are as follows: di-o-tolyl ketone, 70°; di-m-tolyl ketone, 80°; 2,2'-dichlorobenzophenone, 94°; and 3,3'-dichlorobenzophenone, 70°. An error of ± 0.1 D in the calculated dipole moments would change these angles by $\pm 10^{\circ}$ for the tolyl ketones and by $\mp 2^{\circ}$ for the chloro-derivatives.

These angles would be controlled by the competition between the extent of conjugation of the phenyl rings with the carbonyl group and by steric repulsions. The higher value of β for 2,2'-dichlorobenzophenone could be a consequence of neglecting to correct for any interaction between the mesomeric moments of the chlorine

TABLE 2

Polarisation data and dipole moments (μ) at 25.0 °C in benzene solution

Compound	α	β	γ	$P_{\mathrm{T}}/\mathrm{cm^{3}}$	R_D/cm^3	μ/D	Lit./D
Benzophenone	5·70,	-0.258	0.277	243.6	56.95	3.02	2.96 ª
Di-o-tolyl ketone	3.77_{2}	-0.230	0.179	206.4	63.49	2.64	
Di-m-tolyl ketone	$5 \cdot 20^{-2}_{2}$	-0.226	0.219	263.2	65.43	3.11	
Di-p-tolyl ketone	6.10	-0.218	0.266	299.3	67.78	3.37	3.45 b
2,2'-Dichlorobenzophenone	6.04_{0}	-0.402	0.265	340.9	67.10	3.66	
3,3'-Dichlorobenzophenone	4·23	-0.391	0.258	256.5	67.78	3.04	
4,4'-Dichlorobenzophenone	1.50°_{3}	-0.401	0.281	126.6	68.14	1.69	1·79, ^b 1·72 °
Benzil	7.43°_{2}	-0.322	0.256	$345 \cdot 2$	60.92	3.73	3.79 d
2,2'-Dimethylbenzil	5.75	-0.218	0.248	323.6	75.92	3.48	
3,3'-Dimethylbenzil	$7 \cdot 20_4$	-0.236	0.302	387.2	77.12	3.89	
4,4'-Dimethylbenzil	8.64	-0.242	0.228	451.3	73.36	4.30	
2,2'-Dichlorobenzil	5.62°_{9}	-0.421	0.201	$355 \cdot 6$	69.88	3.74	
3,3'-Dichlorobenzil	4 ·59₄	-0.477	0.255	296.5	68.15	3.34	
4,4'-Dichlorobenzil	$2 \cdot 11_{6}^{*}$	-0.366	0.249	$175 \cdot 8$	79.96	$2 \cdot 20$	
Benzhydrol	1.82_{3}	-0.258	0.247	111.8	56.53	1.64	1.60
Di-o-tolylmethanol	1.90_{6}	-0.219	0.241	134.6	67.28	1.82	v
Di- <i>m</i> -tolylmethanol	1.59°_{1}	-0.501	0.215	$123 \cdot 2$	67.41	1.65	
Di-p-tolylmethanol	1.67^{-}_{7}	-0.196	0.212	227.0	67.61	1.70	
Di-o-chlorophenylmethanol	2.31	-0.395	0.257	166.9	67.99	$2 \cdot 20$	
Di-m-chlorophenylmethanol	3.07_{8}	-0.390	0.247	$202 \cdot 8$	67.30	2.57	
Di-p-chlorophenylmethanol	2.51_{4}	-0.399	0.257	175.9	67.69	2.30	
Benzoin	6.40_{8}	-0.314	0.233	308.2	61.10	3.48	3.491
2,2'-Dimethylbenzoin	5.41_{7}	-0.206	0.131	311.9	$72 \cdot 12$	3.43	
3,3'-Dimethylbenzoin	6.39_{2}	-0.128	0.068	359.4	72.59	3.75	
4,4'-Dimethylbenzoin	7.56_{5}	-0.262	0.208	404.8	71.66	4.04	
2,2'-Dichlorobenzoin	2.99_{4}	-0.489	0.272	$213 \cdot 1$	68.55	2.66	
3,3'-Dichlorobenzoin	4.00_{6}	-0.433	0.244	271.3	71.68	3.13	
4,4'-Dichlorobenzoin	$2 \cdot 25_{1}$	-0.393	0.259	182.0	75.84	$2 \cdot 28$	

^a N. J. Leonard and L. E. Sutton, *J. Amer. Chem. Soc.*, 1948, **70**, 1564. ^b A. Lutringhans and J. Grohmann, *Z. Naturforsch.*, 1955, **10**b, 365. ^c L. E. Sutton and G. C. Hampson, *Trans. Faraday Soc.*, 1935, **31**, 945. ^d C. C. Caldwell and R. J. W. Le Fèvre, *J. Chem. Soc.*, 1939, 1614. ^e D. Cleverdon and J. W. Smith, *J. Chem. Soc.*, 1951, 2321. ^fO. Hassel, *Z. Elektrochem.*, 1930, **36**, 735.

and 1.59 D for a chlorine atom.¹⁰ This gives a calculated dipole moment for di-*p*-tolyl ketone of 3.39 D, only 0.02 D greater than the observed value, but that for 4,4'-dichlorobenzophenone (1.43 D) is 0.26 D less than determined experimentally. This probably arises from an interaction between the mesomeric moments of the chlorine atoms and carbonyl group.

ortho- and meta-Substituted Benzophenones.—If each phenyl ring is twisted through an angle β from the sterically impossible structure of a planar molecule (cf Figure 1) the resultant dipole moment of a compound with identical substituents in each phenyl ring, obtained by vector addition of component moments, is given by expression (2) where the angle α is 60° for ortho- and 120°

 $\mu = \mu_{\text{Ph},\text{CO}} + 2\mu_{\text{s}} \left(\cos\alpha\cos\gamma + \sin\alpha\sin\gamma\cos\beta\right) \quad (2)$

for meta-substitution. The values of the angle β for ⁸ E. G. McRae and L. Goodman, J. Chem. Phys., 1958, **29**, 334.

atoms and carbonyl group or it could be a genuine increase resulting from an attraction between the

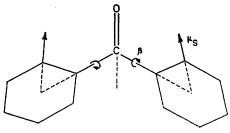


FIGURE 1 Structure of benzophenones

chlorine and *ortho*-hydrogen atoms of different phenyl rings.

With an angle of twist β of 70° or greater the con-° C. W. N. Cumper, A. I. Vogel, and S. Walker, J. Chem. Soc., 1957, 3640.

¹⁰ C. W. N. Cumper and A. I. Vogel, J. Chem. Soc., 1960, 4723.

jugation effect would be small. If a decrease in conjugation had occurred on introducing substituents into the parent benzophenone this would require a smaller value of β for the chloro-compounds but a greater value for the tolyl ketones.

Similar conformations have been deduced from the dipole moments of the corresponding sulphides,¹¹ the agreement between the values for substituents in the 2-position being closer than in the present case because of the reduced mesomeric effect. In their sulphoxides and sulphones β appears to be greater than 90°. The molar Kerr constant of benzophenone, measured in benzene solution,¹² is consistent with a β value of about 45° and in crystalline 3,3'-dibromobenzophenone ¹³ it is 23°.

Benzils.—The dipole moment ¹⁴ of biacetyl (1.08 D) has been interpreted as indicating an effective angle of

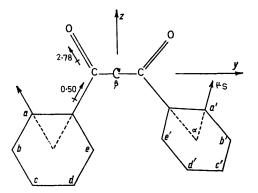


FIGURE 2 Structure of benzils. Position of substituent; (I), a a' ($\alpha = \alpha' = 60^{\circ}$) or b b' ($\alpha = \alpha' = 120^{\circ}$); (II), e e' ($\alpha = \alpha' = 300^{\circ}$) or d d' ($\alpha = \alpha' = 240^{\circ}$); (III), a e' ($\alpha = 60^{\circ}$; $\alpha' = 300^{\circ}$) or b d' ($\alpha = 120^{\circ}$; $\alpha' = 240^{\circ}$)

160° between the two C=O directions; in cyclic 1,2diketones of large ring size this angle 15 is 130-140°. The conformations in these aliphatic systems must be determined primarily by the dipolar interaction between the two polar carbonyl groups and the necessity for them to be planar for a maximum mesomeric effect. The u.v. spectrum of benzil 16 proves the presence of strong conjugation between each carbonyl group and its attached phenyl ring, suggesting that the PhCO units are essentially planar. The conjugation between the carbonyl groups is consequently weakened, the tendency for them to be planar is reduced, and the dipole moments of benzils are correspondingly greater.

If the carbonyl moment (μ_{CO}) is taken as 2.78 D and that of C-Ph (μ_{OPh}) as 0.50 D, the experimental dipole moment of benzil requires the two PhCO planes to

¹² R. Bramley and R. J. W. Le Fèvre, J. Chem. Soc., 1962, 56.

intersect at an angle of 98°. The corresponding angle for 4.4'-dimethylbenzil is 94° and that for 4.4'-dichlorobenzil 83°, measured from a planar cis-conformation. The slightly lower angle in the last compound may be in error through neglect of mesomeric interaction moments: if these were the same as in 4,4'-dichlorobenzophenone (0.26 D), then the calculated angle between the PhCO planes is increased to 99°.

ortho- and meta-Substituted Benzils .--- By reference to Figure 2 the component moments from the left-hand 'half-molecule' are given by equations (3)—(5). The

$$\mu_{Z} = [(\mu_{CO} + \mu_{PhC} + \mu_{s} \cos \alpha) \cos 30 + \mu_{s} \sin \alpha \sin 30] \cos \beta/2 \quad (3)$$

$$\mu_{F} = (\mu_{PbC} - \mu_{CO} + \mu_{s} \cos \alpha) \sin 30 - \mu_{s} \sin \alpha \cos 30 \quad (4)$$

 $\mu_X = \left[(\mu_{\rm CO} + \mu_{\rm PhC} + \right]$ $\mu_{\rm s} \cos \alpha \cos 30 + \mu_{\rm s} \sin \alpha \sin 30 \sin \beta/2$ (5)

components μ_{X}' and μ_{Y}' from the other 'half-molecule' have opposite signs and the resultant molecular dipole moment is given by (6).

$$\mu^{2} = (\mu_{X} + \mu_{X}')^{2} + (\mu_{Y} + \mu_{Y}')^{2} + (\mu_{Z} + \mu_{Z}')^{2} \quad (6)$$

Three conformations (I), (II), and (III) (Figure 2) will be considered. The values of the angles β at which these equations are in agreement with the experimental results are listed in Table 3, the range quoted being the change in β for a 0.1 D alteration to the calculated dipole moments. Except for 3,3'-dichlorobenzil, which cannot have conformation (II), it is not possible to differentiate between the three structures on experimental grounds. The unsymmetrical conformation (III) may be somewhat less probable and, because in o-tolualdehyde the predominant conformation * corresponds to (II), this may be the more likely structure for ortho-substituted benzils.

TABLE 3

Values of β at which calculated and experimental dipole moments of benzils agree

		0011101111000001	
Benzil	(I)	(II)	(III)
2,2'-Dimethyl-	$92\cdot5\pm3\cdot5$	$104{\cdot}5\pm 3{\cdot}5$	100.5 ± 3.5
3,3'-Dimethyl-	$93\cdot5\pm1\cdot5$	$104{\cdot}0\pm1{\cdot}5$	100.5 ± 1.5
2,2'-Dichloro-	$127\cdot5\pm1\cdot5$	$97{\cdot}5 \pm 2{\cdot}0$	$137\cdot5\pm1\cdot5$
3,3'-Dichloro-	107.5 ± 1.5		$125{\cdot}0\pm1{\cdot}0$

In each of these compounds this analysis implies an angle of twist β in the region of 100°. In this respect they have similar conformations to those of hydrogen peroxide and hydrazine ¹⁸ but different from the aliphatic

¹³ S. Ramaseshan and K. Venkatesan, Experientia, 1958, 14, 237.

¹⁴ P. H. Cureton, C. G. Le Fèvre, and R. J. W. Le Fèvre, J. Chem. Soc., 1961, 4447. ¹⁵ C. W. N. Cumper, G. B. Leton, and A. I. Vogel, J. Chem.

Soc., 1965, 2067. ¹⁶ C. N. R. Rao, 'Ultra-Violet and Visible Spectroscopy,'

Butterworths, London, 1961.

 ¹⁷ S. I. Ahmad, Indian J. Pure and Appl. Phys., 1963, 1, 434.
 ¹⁸ C. C. Caldwell and R. J. W. Le Fèvre, J. Chem. Soc., 1939, 1614.

^{*} From the electric dipole moment of benzaldehyde ¹⁷ (2.75 D) the cis and trans (with respect to the methyl and carbonyl groups) forms of o-tolualdehyde have approximate moments of 2.39 and 2.19 D respectively. The experimental value is 2.80 D. In estimating these dipole moments it is assumed that the PhC moment is 0.50 D giving a C=O bond moment of 2.49 D in aldehvdes.

¹¹ C. W. N. Cumper, J. F. Read, and A. I. Vogel, J. Chem. Soc., 1965, 5323, 5860.

biacetyl and large-ring cyclic 1,2-diketones. The difference is presumably associated with the reduced conjugation between the carbonyl groups in the aromatic compounds not being sufficient to offset unfavourable steric interactions and exchange repulsions.

The Kerr constant of benzil¹⁴ has been interpreted to give an angle of twist β of 97°, the closest agreement between calculated and experimental values being when

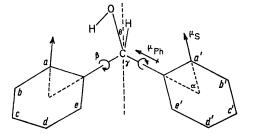


FIGURE 3 Structure of benzyhydrol. Position of substituent; (I), a a' or b b'; (II), e e' or d d'; (III), a' e or b' d; (IV), a e' or b d'

each phenyl ring is also twisted about its 1,4-axis by 5° . A skew structure is consistent with the u.v. spectra ¹⁹ of benzils.

Benzhydrols.—The hydroxy-group in benzhydrol and its meta- and para-substituted derivatives has sufficient room to rotate about the C-O bond even when the ortho-hydrogen atoms are least favourably situated. This rotation is also feasible for ortho-substituted compounds but in these cases the conformations may not be symmetrical. The experimental results are analysed in terms of the four conformations illustrated in Figure 3. Except for the contribution from the C-OH group the resultant of the remaining component group moments $\mu_{\rm R}$ are given by equations (7) and (8). Application of

(I) and (II):
$$\mu_{\rm R} = 2\mu_{\rm Ph} \cos \gamma + 2\mu_{\rm s} (\cos \gamma \cos \alpha \pm \sin \alpha \sin \gamma \cos \beta)$$
 (7)

(III) and (IV):
$$\mu_{\rm R}^2 = (2\mu_{\rm s}\sin\alpha\cos\gamma\cos\beta)^2 + (2\mu_{\rm s}\sin\alpha\sin\beta)^2 + (2\mu_{\rm Ph}\cos\gamma + 2\mu_{\rm s}\cos\alpha\cos\gamma)^2$$
 (8)

the Eyring formula ²⁰ to the free rotation of the moments about the C-O bond gives equation (9) where λ , the angle

$$\mu^{2} = \mu_{\rm OH} + \mu_{\rm CO}^{2} + \mu_{\rm R}^{2} - 2\mu_{\rm OH}\mu_{\rm CO}\cos 70 + 2\mu_{\rm R}\mu_{\rm OH}\cos\lambda - 2\mu_{\rm OH}\mu_{\rm R}\cos 70\cos\lambda \quad (9)$$

between $\mu_{\rm R}$ and the C–O bond direction, equals θ in conformations (I) and (II) but for (III) and (IV) is given by equation (10). The substituent moments and bond

$$\mu_{\rm R} \cos \lambda = 2[(\mu_{\rm Ph} \cos \gamma + \mu_{\rm s} \cos \alpha \cos \gamma) \cos \theta \pm \\ \mu_{\rm s} \sin \alpha \sin \beta \sin \theta] \quad (10)$$

angles being taken as $\mu_{\rm Ph} = -0.30$, $\mu_{\rm OH} = -1.51$, $\mu_{\rm CO} = 1.40$ D²¹ and $2\gamma = 2\theta = \angle \text{COH} = 110^\circ$, the calculated dipole moments are shown in Table 4 and Figure 4. The agreement between the experimental and

¹⁹ N. J. Leonard, R. T. Rapala, H. L. Herzog, and E. R. Blout, J. Amer. Chem. Soc., 1949, **71**, 2997.

theoretical values for benzhydrol and the *para*-substituted compounds provides support for the analysis and group moments employed.

Table	4
-------	---

Values of β at	t which ca	alculated	and	experimental dipole
r	nomen ts a	of benzhy	/drols	s agree

		Conformation					
Compound	μ/D	(I)	(II)		(III)	(IV)	
Benzhydrol	1.64		$\mu_{\rm calc.}$	=	1.61	• •	
Di-o-tolylmethanol	1.82					35	
Di-m-tolylmethanol	1.65		84			(6)	
Di-p-tolylmethanol	1.70		$\mu_{\rm calc.}$	=	1.70	(-)	
Di-o-chlorophenylmethanol	2.20	78	•				
Di-m-chlorophenylmethanol	2.57		56		(11)	79	
Di-p-chlorophenylmethanol	2.30		$\mu_{\text{calc.}}$	=	2 ∙30́		

Table 4 also lists the values of the angle of twist β , from a conformation in which the phenyl rings are coplanar, for which the calculated and experimental moments for the ortho- and meta-substituted benzhydrols are in agreement. This approach implies that the average conformations for di-m-tolylmethanol and di-o-chlorophenylmethanol are ones in which the phenyl rings are approximately orthogonal to the C-CH(OH)-C plane and with the substituents on either side of this plane. Di-m-chlorophenylmethanol could also have a symmetrical conformation (II), with a smaller value for β (56°), though the unsymmetrical structure (IV) ($\beta = 79^{\circ}$) is also consistent with experimental results. These conformations are evidently determined primarily by the steric interactions between the phenyl residues

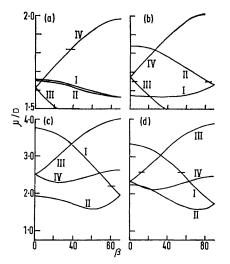


FIGURE 4 Calculated dipole moments of substituted benylhyrols as a function of the angle β ; (a) o-tolylmethanol; (b) m-tolylmethanol; (c) o-chlorophenylmethanol; and (d) m-chlorophenylmethanol

and the necessity for adequate space for the rotating hydroxy-group. In di-o-chlorophenylmethanol some tendency to intramolecular hydrogen bonding could partially invalidate the conclusions but the sharpness of its i.r. absorption at 3630 cm⁻¹ in dilute carbon tetra-

- ²⁰ H. Eyring, Phys. Rev., 1932, **39**, 746.
- ²¹ C. W. N. Cumper, Tetrahedron, 1969, 25, 3131.

chloride solution does not confirm the presence of hydrogen bonding. In the corresponding methyl compound, di-o-tolylmethanol, Figure 4 indicates that only the unsymmetrical conformation (IV) is possible with a β value of *ca.* 35°; this conformation, and possibly (I), allows free rotation of the hydroxy-group. In (IV) the magnetic environments of the methyl groups would not

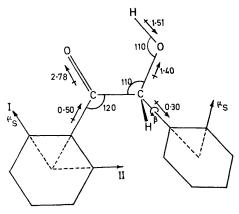


FIGURE 5 Structure of benzoins

be equivalent unless their situations were being interchanged by rotation about the Ph-C bonds. Only a single n.m.r. absorption peak was observed in benzene and chloroform solutions of over an 80 °C temperature range extending down to -40 °C.

Benzoins.—From the u.v. spectra of benzoins¹⁶ it appears that the carbonyl group interacts strongly with the π -electrons in its attached phenyl ring. Also, these molecules exhibit a strong i.r. absorption band at 3480— 3490 cm⁻¹ characteristic of intramolecular hydrogen bonding; this is in spite of the rather long O · · · H-O distance. We therefore assume that the Ph·CO·COH part of the molecule is planar and that the bond angles and component moments are as in Figure 5.

The dipole moments calculated on this basis for benzoin and 4,4'-dimethyl- and -dichloro-benzoins are $3\cdot10, 3\cdot60, \text{ and } 1\cdot79 \text{ D}$ respectively, in poor agreement with the experimental values of $3\cdot48, 4\cdot04, \text{ and } 2\cdot28 \text{ D}$. The discrepancies could arise (a) from the Ph·CO·COH part of the molecule not being strictly planar but oscillating about this as an average situation or (b) from altered component moments caused by the hydrogen bonding and with contributions from structures such as

Ph($\dot{O}H$)-C(\ddot{O})HPh. Reasonable agreement with the experimental results is obtained if the above effects are considered to produce a rather large extra component moment of 1.20 D acting in the direction of the C(O)-C(OH) bond; the calculated moments then being benzoin 3.52 D, 4,4'-dimethylbenzoin 4.00 D, and 4,4'-dichlorobenzoin 2.29 D.

If the moments of the 2,2'- and 3,3'-dimethyl- and 3,3'-dichloro-benzoins are calculated on the above basis for various values of an angle of twist β about the Ph-CHOH bond then agreement with experiment is obtained (a) with the substituent of the first phenyl ring either in position (I) or (II) (Figure 5), the latter being more likely as it would then be *trans* to the carbonyl group, and (b) with the second phenyl ring twisted through an angle of *ca*. 160 or 330° from its position in Figure 5 where the CH-Ph atoms are coplanar; *i.e.*, the two phenyl rings are at an angle of *ca*. 65°.

The calculated dipole moment of 2,2'-dichlorobenzoin is 0.7—3.4 D greater than measured. This might be due to a mesomeric moment between the chlorine atom and carbonyl group but is more likely to arise from an interaction between the hydroxy-hydrogen atom and a chlorine atom.

[1/1111 Received, July 1st, 1971]